Задание №15648
КИМ №17
2 часть
Раздел: 17. Планиметрия второй части
Тема: 17. Вписанные окружности
Источник: Открытый банк заданий ФИПИ
В треугольнике ABC точки M и N лежат на сторонах AB и BC соответственно так, что AM:MB=CN:NB=2:3. Окружность, вписанная в треугольник ABC, касается отрезка MN в точке L.
а) Докажите, что AB+BC=4AC.
б) Найдите радиус окружности, вписанной в треугольник ABC, если ML=9/5, LN=3.