Задание №15610
КИМ №17
2 часть
Раздел: 17. Планиметрия второй части
Тема: 17. Вписанные окружности
Источник: Открытый банк заданий ФИПИ
Диагонали равнобедренной трапеции ABCD с основаниями BC и AD перпендикулярны. Окружность с диаметром AD пересекает боковую сторону CD в точке M, а окружность с диаметром CD пересекает основание AD в точке N. Отрезки AM и CN пересекаются в точке P.
а) Докажите, что в четырёхугольник ABCP можно вписать окружность.
б) Найдите радиус этой окружности, если BC=7, AD=17.