Информатика

Вопросы

1 вопрос
№18636

Для хранения сжатого произвольного растрового изображения размером 192 на 960 пикселей отведено 100 Кбайт памяти без учёта размера заголовка файла. Файл оригинального изображения больше сжатого на 25%. Для кодирования цвета каждого пикселя используется одинаковое количество бит, коды пикселей записываются в файл один за другим без промежутков. Какое максимальное количество цветов можно использовать в изображении?

2 вопрос
№18637

По каналу связи передаются сообщения, содержащие только буквы из набора: В, Д, К, Н, О, Р. Для передачи используется двоичный код, удовлетворяющий условию Фано. Это условие обеспечивает возможность однозначной расшифровки закодированных сообщений. Кодовые слова для некоторых букв известны: Н – 0, К – 1001. Для четырёх оставшихся букв В, Д, О и Р кодовые слова неизвестны. Какое количество двоичных знаков потребуется для кодирования слова КОНОВОД, если известно, что оно закодировано минимально возможным количеством двоичных знаков?

3 вопрос
№18643

Исполнитель Черепаха действует на плоскости с декартовой системой координат. В начальный момент Черепаха находится в начале координат, её голова направлена вдоль положительного направления оси ординат, хвост опущен.
При опущенном хвосте Черепаха оставляет на поле след в виде линии. В каждый конкретный момент известно положение исполнителя и направление его движения. У исполнителя существует 6 команд: Поднять хвостозначающая переход
к перемещению без рисования; Опустить хвостозначающая переход в режим рисования; Вперёд n (где n - целое число), вызывающая передвижение Черепахи на n единиц в том направлении, куда указывает её голова; Назад n (где n - целое число), вызывающая передвижение в противоположном голове направлении; Направо m (где m - целое число), вызывающая изменение направления движения на m градусов по часовой стрелке, Налево m (где m - целое число), вызывающая изменение направления движения на m градусов против часовой стрелки.

Запись Повтори k [Команда1 Команда2 … КомандаS] означает, что последовательность из S команд повторится k раз.

Черепахе был дан для исполнения следующий алгоритм

Повтори 2 [Вперёд 8 Направо 90 Вперёд 18 Направо 90]

Поднять хвост

Вперёд 4 Направо 90 Вперёд 10 Налево 90

Опустить хвост

Повтори 2 [Вперёд 17 Направо 90 Вперёд 7 Направо 90]

Определите, сколько точек с целочисленными координатами будут находиться внутри объединения фигур, ограниченного заданными алгоритмом линиями, включая точки на линиях.

4 вопрос
№18644

Исполнитель Черепаха действует на плоскости с декартовой системой координат. В начальный момент Черепаха находится в начале координат, её голова направлена вдоль положительного направления оси ординат, хвост опущен.
При опущенном хвосте Черепаха оставляет на поле след в виде линии. В каждый конкретный момент известно положение исполнителя и направление его движения. У исполнителя существует две команды: Вперёд n (где n - целое число), вызывающая передвижение Черепахи на n единиц в том направлении, куда указывает её голова; Направо m (где m - целое число), вызывающая изменение направления движения на m градусов по часовой стрелке.

Запись Повтори k [Команда1 Команда2 … КомандаS] означает, что последовательность из S команд повторится k раз (где k – целое число).

Черепахе был дан для исполнения следующий алгоритм:

Направо 315 Повтори 7 [Вперёд 12 Направо 45 Вперёд 6 Направо 135].

Определите, сколько точек с целочисленными координатами будут находиться внутри области, которая ограничена линией, заданной алгоритмом. Точки на линии учитывать не следует.

5 вопрос
№18645

В файле приведён фрагмент базы данных «Кондитерские изделия» о поставках конфет и печенья в магазины районов города. База данных состоит из трёх таблиц.

Таблица «Движение товаров» содержит записи о поставках товаров в магазины в течение первой половины июня 2022 г., а также информацию о проданных товарах. Поле Тип операции содержит значение Поступление или Продажа, а в соответствующее поле Количество упаковок, шт. внесена информация о том, сколько упаковок товара поступило в магазин или было продано в течение дня.

Таблица «Товар» содержит информацию об основных характеристиках каждого товара.

Таблица «Магазин» содержит информацию о местонахождении магазинов.

Используя информацию из приведённой базы данных, определите, на сколько увеличилось количество пряников тульских с начинкой, имеющихся в наличии в магазинах Заречного района, за период с 1 по 15 июня включительно.

В ответе запишите только число.

Баннер скидки
6 вопрос
№18646

Откройте файл электронной таблицы, содержащей в каждой строке семь натуральных чисел. Определите количество строк таблицы, для чисел которых выполнены оба условия:

– в строке есть одно число, которое повторяется в строке трижды, остальные четыре числа различны;

– повторяющееся число не является ни максимальным, ни минимальным числом строки.

В ответе запишите только число.

7 вопрос
№18647

На рисунке схема дорог N-ского района изображена в виде графа, в таблице содержатся сведения о протяжённости каждой из этих дорог (в километрах).

Так как таблицу и схему рисовали независимо друг от друга, нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Определите, какова сумма протяжённостей дорог из пункта G в пункт и из пункта C в пункт A.

В ответе запишите целое число.

8 вопрос
№18649

Для хранения сжатого произвольного растрового изображения размером 640 на 256 пикселей отведено 110 Кбайт памяти без учёта размера заголовка файла. Файл оригинального изображения больше сжатого на 55%. Для кодирования цвета каждого пикселя используется одинаковое количество бит, коды пикселей записываются в файл один за другим без промежутков. Какое максимальное количество цветов можно использовать в изображении?

9 вопрос
№18650

Квадрат разлинован на × N клеток (1 < N < 26). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку; по команде вниз –– в соседнюю нижнюю. Робот разрушается при попытке выхода за границу квадрата или при попытке пересечения стены клетки. В таблице стены отмечены границами с утолщением.

Перед запуском Робота в каждой клетке квадрата указан бонус, который Робот забирает после посещения клетки. Размер бонуса в каждой клетке –– это натуральное число, не превышающее 100. Это правило относится к начальной и конечной клеткам маршрута Робота.

Определите минимальную и максимальную суммы бонусов, которые может собрать Робот, перемещаясь из левой верхней клетки квадрата в его правую нижнюю клетку. В ответе укажите два числа: сначала минимальную сумму, затем максимальную.

Исходные данные представлены в форме электронной таблицы размером N × N, в которой одна ячейка соответствует одной клетке квадрата. Стены, через которые Роботу нельзя проходить, отмечены в электронной таблице границами с утолщением.

10 вопрос
№18657

По каналу связи передаются шифрованные сообщения, содержащие только пять букв: А, Б, В, Г, Д. Для передачи используется неравномерный двоичный код. Для букв А, Б и В используются кодовые слова 001, 010, 0111 соответственно.

Укажите минимальную сумму длин кодовых слов для букв Г и Д, при которых код будет удовлетворять условию Фано.

Примечание. Условие Фано означает, что никакое кодовое слово не является началом другого кодового слова. Это обеспечивает возможность однозначной расшифровки закодированных сообщений.