Банк заданий ЕГЭ по информатике
Вопросы
Миша заполнял таблицу истинности логической функции F
((w → y) → (x ≡ y)) \/ ¬z,
но успел заполнить лишь фрагмент из трёх различных её строк, даже не указав, какому столбцу таблицы соответствует каждая из переменных w, x, y, z.

Определите, какому столбцу таблицы соответствует каждая из переменных w, x, y, z.
В ответе напишите буквы w, x, y, z в том порядке, в котором идут соответствующие им столбцы (сначала буква, соответствующая первому столбцу; затем буква, соответствующая второму столбцу, и т.д.). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.
Определите количество шестизначных чисел, записанных в шестеричной системе счисления, в записи которых ровно одна цифра 2, при этом никакая нечётная цифра не стоит рядом с цифрой 2.
Для кодирования некоторой последовательности, состоящей из букв А, Б, В, Г, Д, Е, решили использовать неравномерный двоичный код, удовлетворяющий условию Фано. Для буквы А использовали кодовое слово 1; для буквы Б – кодовое слово 01. Какова наименьшая возможная сумма длин кодовых слов для букв В, Г, Д, Е?
Примечание. Условие Фано означает, что никакое кодовое слово не является началом другого кодового слова. Это обеспечивает возможность однозначной расшифровки закодированных сообщений.
На рисунке схема дорог N-ского района изображена в виде графа, в таблице содержатся сведения о протяжённости каждой из этих дорог (в километрах).

Так как таблицу и схему рисовали независимо друг от друга, нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Определите, какова сумма протяжённостей дорог из пункта A в пункт C и из пункта B в пункт H.
В ответе запишите целое число.
Прибор автоматической фиксации нарушений правил дорожного движения делает цветные фотографии размером 1024×768 пикселей, используя палитру из 4096 цветов. Снимки сохраняются в памяти камеры, группируются в пакеты по несколько штук, а затем передаются в центр обработки информации со скоростью передачи данных 1 310 720 бит/с. Каково максимально возможное количество снимков в одном пакете, если на передачу одного пакета отводится не более 300 секунд?
В ответе запишите целое число.
На рисунке схема дорог Н-ского района изображена в виде графа, в таблице содержатся сведения о протяжённости каждой из этих дорог (в километрах).

Так как таблицу и схему рисовали независимо друг от друга, то нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Определите, какова протяжённость дороги из пункта В в пункт Г. В ответе запишите целое число – так, как оно указано в таблице.
Миша заполнял таблицу истинности логической функции F
(y /\¬x) \/ (x≡z) \/ ¬w,
но успел заполнить лишь фрагмент из трёх различных её строк, даже не указав, какому столбцу таблицы соответствует каждая из переменных w, x, y, z.

Определите, какому столбцу таблицы соответствует каждая из переменных w, x, y, z.
В ответе напишите буквы w, x, y, z в том порядке, в котором идут соответствующие им столбцы (сначала буква, соответствующая первому столбцу; затем буква, соответствующая второму столбцу, и т.д.). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.
Квадрат разлинован на N × N клеток (1 < N < 26). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку; по команде вниз –– в соседнюю нижнюю. Робот разрушается при попытке выхода за границу квадрата или при попытке пересечения стены клетки. В таблице стены отмечены границами с утолщением.
Перед запуском Робота в каждой клетке квадрата указан бонус, который Робот забирает после посещения клетки. Размер бонуса в каждой клетке –– это натуральное число, не превышающее 100. Это правило относится к начальной и конечной клеткам маршрута Робота.
Определите минимальную и максимальную суммы бонусов, которые может собрать Робот, перемещаясь из левой верхней клетки квадрата в его правую нижнюю клетку. В ответе укажите два числа: сначала минимальную сумму, затем максимальную.
Текст романа Льва Николаевича Толстого «Анна Каренина» представлен в виде файлов нескольких форматов. Откройте один из файлов и определите, сколько раз встречается в тексте отдельное слово «душа» со строчной буквы.
В ответе запишите только число.
Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m». Для какого наибольшего натурального числа А логическое выражение
¬ДЕЛ(x, А)→(ДЕЛ(x, 36)→ ¬ДЕЛ(x, 54))
тождественно истинно (т.е. принимает значение 1 при любом неотрицательном целом значении переменной х)?
