1 вопрос
№5276

В тематическом парке для строительства арт-объектов используются однородные прямые круговые цилиндры с одинаковыми высотами; таких цилиндров заготовлено N штук. Руководством парка рабочим поставлена задача создать максимальной высоты пирамиду из поставленных друг на друга цилиндров, такую, чтобы каждый следующий цилиндр имел радиус основания не менее чем на 7 единиц меньше, чем предыдущий, чтобы у посетителей парка была возможность на образовавшиеся уступы помещать различные мелкие предметы. Определите количество цилиндров, которое нужно использовать для создания такой пирамиды, и максимально возможный радиус основания цилиндра, который будет находиться на вершине такой пирамиды.

Входные данные.

В первой строке входного файла находится число N - количество цилиндров (натуральное число, не превышающее 10 000). В следующих N строках находятся значения длин радиусов имеющихся цилиндров (все числа натуральные, не превышающие 10 000), каждое — в отдельной строке.

Запишите в ответе два целых числа: сначала количество цилиндров, которое необходимо использовать для строительства пирамиды максимальной высоты, затем максимально возможную длину радиуса цилиндра, который можно поместить на вершину такой пирамиды.

Типовой пример организации данных во входном файле 

5

53

50 

42 

50 

40

Пример входного файла приведён для пяти цилиндров и случая, когда минимальная допустимая разница между длинами радиусов двух последовательно идущих в пирамиде цилиндров составляет 3 единицы.

При таких исходных данных условию задачи удовлетворяют цилиндры с длинами радиусов оснований 40, 50 и 53 или 42, 50 и 53 соответственно, т. е. количество цилиндров равно 3, а радиус верхнего цилиндра составляет 42.

Типовой пример имеет иллюстративный характер. Для выполнения задания используйте данные из прилагаемых файлов.